7,021 research outputs found

    The Low-Lying Dirac Spectrum of Staggered Quarks

    Full text link
    We investigate and clarify the role of topology and the issues surrounding the epsilon regime for staggered quarks. We study unimproved and improved staggered quark Dirac operators on quenched lattice QCD gluon backgrounds generated using a Symanzik-improved gluon action. For the improved Dirac operators we find a clear separation of the spectrum into would-be zero modes and others. The number of would-be zero modes depends on the topological charge as predicted by the continuum Index Theorem, and the expectation values of their chirality are large for the most improved actions (approx 0.7). The remaining modes have low chirality and show clear signs of clustering into quartets that become degenerate in the continuum limit. We demonstrate that the lattice spacing and volume dependence of the eigenvalues follow expectations. Furthermore, the non-zero modes follow the random matrix theory predictions for all topological charge sectors. The values of the chiral condensate extracted from fits to the theoretical distributions are consistent with each other, and with the results obtained from the total density of eigenvalues using the Banks-Casher relation. We conclude that staggered quarks respond correctly to QCD topology when both fermion and gauge actions are improved.Comment: 17 pages, a few typos corrected, part of one figure change

    Defect turbulence in inclined layer convection

    Full text link
    We report experimental results on the defect turbulent state of undulation chaos in inclined layer convection of a fluid withPrandtl number ≈1\approx 1. By measuring defect density and undulation wavenumber, we find that the onset of undulation chaos coincides with the theoretically predicted onset for stable, stationary undulations. At stronger driving, we observe a competition between ordered undulations and undulation chaos, suggesting bistability between a fixed-point attractor and spatiotemporal chaos. In the defect turbulent regime, we measured the defect creation, annihilation, entering, leaving, and rates. We show that entering and leaving rates through boundaries must be considered in order to describe the observed statistics. We derive a universal probability distribution function which agrees with the experimental findings.Comment: 4 pages, 5 figure

    Improvement and Taste Symmetry Breaking for Staggered Quarks

    Full text link
    We compare several improved actions for staggered quarks. We study the effect of improvement on the taste changing interactions by calculating the splitting in the pion spectrum. We investigate the effect of the improvement on some topological properties.Comment: 3 pages, 3 figures, Lattice 2003 proceeding

    Cost Effective Measurement and Verification at Fairchild AFB

    Get PDF

    High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor

    Get PDF
    We present the design of a concentric tube (CT) reactor for roll-to-roll chemical vapor deposition (CVD) on flexible substrates, and its application to continuous production of graphene on copper foil. In the CTCVD reactor, the thin foil substrate is helically wrapped around the inner tube, and translates through the gap between the concentric tubes. We use a bench-scale prototype machine to synthesize graphene on copper substrates at translation speeds varying from 25 mm/min to 500 mm/min, and investigate the influence of process parameters on the uniformity and coverage of graphene on a continuously moving foil. At lower speeds, high-quality monolayer graphene is formed; at higher speeds, rapid nucleation of small graphene domains is observed, yet coalescence is prevented by the limited residence time in the CTCVD system. We show that a smooth isothermal transition between the reducing and carbon-containing atmospheres, enabled by injection of the carbon feedstock via radial holes in the inner tube, is essential to high-quality roll-to-roll graphene CVD. We discuss how the foil quality and microstructure limit the uniformity of graphene over macroscopic dimensions. We conclude by discussing means of scaling and reconfiguring the CTCVD design based on general requirements for 2-D materials manufacturing.National Science Foundation (U.S.). Science, Engineering, and Education for Sustainability (Postdoctoral Fellowship Award 1415129

    Attitudes towards the neurological examination in an unwell neonate: a mixed methods approach

    Get PDF
    Background The neurological examination of an unwell neonate can aid management, such as deciding if hypothermia treatment is warranted in hypoxic ischaemic encephalopathy or directing investigations in hypotonic neonates. Current standardised examinations are not designed for unwell or ventilated neonates, and it is unclear how confident paediatricians feel about the examination or what aspects they perform. Aim This study aimed to review the confidence of UK paediatricians on the neurological examination in unwell neonates, describe their attitudes towards it, and determine what could improve practice. Methods An explanatory sequential mixed methods approach (QUAN → QUAL) with equal weighting between stages. A survey on attitudes to the neonatal neurological examination was sent to all UK neonatal units and members of the British Paediatric Neurology Association. Volunteers were sought for semi-structured interviews. Thematic analysis was used to interpret qualitative data, which was triangulated with quantitative questionnaire data. Results One hundred ninety-three surveys were returned, 31.0% from neonatologists, 9.3% paediatric neurologist. The median range for confidence was 4 (IQR3-5). Twenty-three interviews occurred. Thematic analysis revealed three themes: “Current culture on neonatal units”, “ Practicalities of the neurological examination in unwell neonates”, and “Changing the culture”. Most interviewees did not feel confident performing or interpreting the neurological examination in unwell neonates. Many units had a culture of seeing it as low priority, did not see its relevance in the acute management of unwell neonates. A few interviewees worked in units with a positive culture towards the neurological examination who used adapted standardised examinations and provided training. 72% of questionnaire responders wanted a new standardised neurological examination designed for the unwell neonate, which should be short, utilise pictures like the Hammersmith Neonatal Neurological Examination, contain an assessment of consciousness, be developmentally appropriate and achievable in unwell, ventilated neonates, be accompanied by a schematic to aid interpretation, and for greater training and assessments of competence. Conclusions There are barriers preventing paediatricians being able to perform a neurological examination in unwell neonates, and a culture of neurophobia is common. A new standardised examination is needed, alongside aids to interpretation, training, and assessment

    Galactic Coronae in the Intracluster Environment: Semi-confined Stellar-feedback-driven Outflows

    Get PDF
    Recently X-ray observations have shown the common presence of compact galactic coronae around intermediate-mass spheroid galaxies embedded in the intracluster/intragroup medium (ICM). We conduct 2-D hydrodynamic simulations to study the quasi-steady-state properties of such coronae as the natural products of the ongoing distributed stellar feedback semi-confined by the thermal and ram pressures of the ICM. We find that the temperature of a simulated corona depends primarily on the specific energy of the feedback, consistent with the lack of the correlation between the observed hot gas temperature and K-band luminosity of galaxies. The simulated coronae typically represent subsonic outflows, chiefly because of the semi-confinement. As a result, the hot gas density increases with the ICM thermal pressure. The ram pressure, on the other hand, chiefly affects the size and lopsidedness of the coronae. The density increase could lead to the compression of cool gas clouds, if present, and hence the formation of stars. The increase also enhances radiative cooling of the hot gas, which may fuel central supermassive black holes, explaining the higher frequency of active galactic nuclei observed in clusters than in the field. The radiation enhancement is consistent with a substantially higher surface brightness of the X-ray emission detected from coronae in cluster environment. The total X-ray luminosity of a corona, however, depends on the relative importance of the surrounding thermal and ram pressures. These environment dependences should at least partly explain the large dispersion in the observed diffuse X-ray luminosities of spheroids with similar stellar properties. Furthermore, we show that an outflow powered by the distributed feedback can naturally produce a positive radial gradient in the hot gas entropy, mimicking a cooling flow.Comment: accepted by MNRAS, comments are welcom

    Using foreground/background analysis to determine leaf and canopy chemistry

    Get PDF
    Spectral Mixture Analysis (SMA) has become a well established procedure for analyzing imaging spectrometry data, however, the technique is relatively insensitive to minor sources of spectral variation (e.g., discriminating stressed from unstressed vegetation and variations in canopy chemistry). Other statistical approaches have been tried e.g., stepwise multiple linear regression analysis to predict canopy chemistry. Grossman et al. reported that SMLR is sensitive to measurement error and that the prediction of minor chemical components are not independent of patterns observed in more dominant spectral components like water. Further, they observed that the relationships were strongly dependent on the mode of expressing reflectance (R, -log R) and whether chemistry was expressed on a weight (g/g) or are basis (g/sq m). Thus, alternative multivariate techniques need to be examined. Smith et al. reported a revised SMA that they termed Foreground/Background Analysis (FBA) that permits directing the analysis along any axis of variance by identifying vectors through the n-dimensional spectral volume orthonormal to each other. Here, we report an application of the FBA technique for the detection of canopy chemistry using a modified form of the analysis

    Introduced birds in urban remnant vegetation : does remnant size really matter?

    Get PDF
    Introduced birds are a pervasive and dominant element of urban ecosystems. We examined the richness and relative abundance of introduced bird species in small (1&ndash;5 ha) medium (6&ndash;15 ha) and large (&gt;15 ha) remnants of native vegetation within an urban matrix. Transects were surveyed during breeding and non-breeding seasons. There was a significant relationship between introduced species richness and remnant size with larger remnants supporting more introduced species. There was no significant difference in relative abundance of introduced species in remnants of different sizes. Introduced species, as a proportion of the relative abundance of the total avifauna (native and introduced species), did not vary significantly between remnants of differing sizes. There were significant differences in the composition of introduced bird species between the different remnant sizes, with large remnants supporting significantly different assemblages than medium and small remnants. Other variables also have substantial effects on the abundance of introduced bird species. The lack of significant differences in abundance between remnant sizes suggests they were all equally susceptible to invasion. No patches in the urban matrix are likely to be unaffected by introduced species. The effective long-term control of introduced bird species is difficult and resources may be better spent managing habitat in a way which renders it less suitable for introduced species (e.g. reducing areas of disturbed ground and weed dominated areas).<br /

    Cost Effective Measurement and Verification at Fairchild AFB

    Get PDF
    • 

    corecore